The answer to the $P / N P$ problem is $P \neq N P$ - proof via logical analysis.
Assertion 1: The answer to the P / NP problem is $\mathrm{P} \neq \mathrm{NP}$. The problems having no polynomial time DTM solutions are denoted -P. The first proof: Defining NP is to research -P, and NTM is not used as only DTM, NTM must be used for some problems in -P, thus, $\mathrm{P} \neq \mathrm{NP}$.

The second proof: Assume NP = P, then we have that the NTM NP algorithms are DTM P algorithms. However, the NP algorithms require parallel multi-valued and random guess which can finish in a glance, which does not exist in real life. Thus to avoid the confusions, we have $\mathrm{P} \neq \mathrm{NP}$.

Assertion 2: According to the current understanding with self-contradictory, neither $\mathrm{NP}=\mathrm{P}$ nor $\mathrm{P} \neq \mathrm{NP}$ is provable. 1) To show NP $=P$, we need to show for all problems $X,(X \in N P) \wedge(X \in P)$. It is known now that, thus the existence of P requires the evidence of the real existence of $\mathrm{P} 1(\mathrm{P}=\mathrm{P} 1)$. However, all NP problems depending on NP algorithms do not have evidence of P 1 , which means the proof cannot be finished. 2) To show $\mathrm{NP} \neq \mathrm{P}$, we need to show there exists problem $x:(x \in N P) \wedge(x \in P)$. The evidence of the real nonexistence of $P 1$ will be rejected, because it is known now that the nonexistence of $\mathrm{P}($ denote -P$)$ is not equivalent to the nonexistence of $\mathrm{P}:(-\mathrm{P} \neq-\mathrm{P} 1)$, thus the proof cannot be done. (Received September 13, 2016)

