Jennifer Diemunsch, Nathan Graber, Lucas Kramer, Victor Larsen*

 (vlarsen@kennesaw.edu), Lauren Nelsen, Luke Nelsen, Devon Sigler, Derrick Stolee andCharlie Suer. Color-blind index, computational complexity, and hypergraphs.
A not necessarily proper edge-coloring on a graph yields a color palette $\bar{c}(v)=\left\{a_{i} \ldots, a_{k}\right\}$ for each vertex v where a_{i} is the number of edges incident to v with color i. We reorder $\bar{c}(v)$ for every v in non-increasing order to obtain the color-blind partition $c^{*}(v)$. When the color-blind partition forms a proper vertex labeling, we say that the edge-coloring is color-blind distinguishing, and we let dal (G) be the smallest number of colors necessary for a color-blind distinguishing edge-coloring.

In this talk, we examine the problem of determining $\operatorname{dal}(\mathrm{G})$ for graphs of low degree, and show its connection with computational complexity theory and hypergraph coloring. We show that, for general graphs, determining dal (G) is NP-complete even when it is known that $\operatorname{dal}(G) \in\{2,3\}$. However, we can use known results from hypergraph coloring to deal with regular bipartite graphs. (Received September 20, 2016)

