1125-VI-1138 Göran Bergqvist* (gober@mai.liu.se), Department of Mathematics, Linköping University, 58183 Linköping, Sweden. Envelopes that bound the spectrum of a matrix.
The real part of any eigenvalue of a matrix A is less or equal to the largest eigenvalue of its Hermitian part $H(A)$. Applied to $\exp (-\mathrm{iv}) \mathrm{A}$ for all v , the spectrum of A is also contained in an infinite intersection of v-rotated half-planes, an intersection that equals the numerical range F(A). Adam, Psarrakos and Tsatsomeros showed that using the two largest eigenvalues of $\mathrm{H}(\mathrm{A})$, a cubic curve that restricts the location of eigenvalues can be constructed and, using the idea of rotations, the envelope of such cubic curves defines a region inside $\mathrm{F}(\mathrm{A})$ that still contains the spectrum. In contrast to F(A), the new region is not necessarily convex or connected. Here we present a generalization of their method and show how new restricting curves for the spectrum can be found if one utilizes more than two eigenvalues of $\mathrm{H}(\mathrm{A})$, and how the envelope of such curves bounds a new smaller region for the spectrum. (Received September 15, 2016)

