1125-VK-3023 Mojtaba Moniri* (m-moniri@wiu.edu). Pairs of close cycle-points in a logistic map: 5 -periodicity or 10 ?
The logistic map with parameter r is defined on $[0,1]$ as $f_{r}(x)=r x(1-x)$. Most parameters $r \in(3.570,4)$ exhibit a chaotic orbit for an arbitrary initial point $x_{0} \in(0,1)$. However the interval $(3.739,3.744)$ is inside a period- $5,10,20,40$, etc., region (with successive period-doubling bifurcations). Here we are concerned with the particular parameter $r=3.74$ to clarify on some misleading literature, like half of a dozen items which we mention, that claim an attracting 5-cycle. For $x_{0}=0.5$, some relied on, just as early as, the $100-110$ th terms, all up to only six decimal digits. We give a Mathematica code which outputs the $100,000,000$ th term followed by the next 19 , all with 22 digits (in ≈ 3 minutes on an ordinary desktop). It indicates two cycles of length 10 . The five pairs of counterpart numbers agree up to $13-15$ digits. Generally speaking, and in similar situations, one could challenge this via two attacking approaches. One is to iterate more in an effort to see if we can overcome disagreements: can the digits be stabilized and discrepancies go away (10 to 5 undertake)? In parallel, one can zoom out on the digits in an effort to see if the current agreements persist, or rather differences show up (10 to 20 undertake). (Received September 20, 2016)

