1125-VN-1983 Joshua Zelinsky*, zelinsky@gmail.com. Integer Complexity and P-Adic Expansions of Rational Numbers.
Define $\|n\|$ to be the complexity of n, the smallest number of 1 's needed to write $\|n\|$ using an arbitrary combination of addition and multiplication. John Selfridge showed that $\|n\| \geq 3 \log _{3} n$ for all n, and Guy noted the trivial upper bound that $\|n\| \leq 3 \log _{2} n$ for all $n>1$ by writing n in base 2 . An upper for almost all n was provided by de Reyna and Jan Van de Lune. We discuss better upper bounds and how further improvements relate to understanding the p-adic expansions of rational numbers of the form $-1 / m$ for various m. (Received September 19, 2016)

