1125-VN-2687 Bir Kafle* (bkafle@pnw.edu), 1401 S. US 421, Westville, IN 46391, and Florian Luca and Alain Togbe. On the x-coordinates of Pell equations which are Fibonacci numbers. Preliminary report.
Let $d>1$ be a positive integer which is not a perfect square. Consider the Pell equation $x^{2}-d y^{2}= \pm 4$. All its positive integer solutions (x, y) are given by

$$
\frac{x_{n}+y_{n} \sqrt{d}}{2}=\left(\frac{x_{1}+y_{1} \sqrt{d}}{2}\right)^{n}
$$

for some positive integer n, where $\left(x_{1}, y_{1}\right)$ is the smallest positive integer solution. In this talk, we will show that there is at most one value of the positive integer x participating in the above Pell equation which is a Fibonacci number, when $d \geq 2$. In case $d=2$, and 5 , we have exactly two values of x being members of the Fibonacci sequence.

Joint work with Florian Luca and Alain Togbé. (Received September 20, 2016)

