1116-03-2515 **Justin Brody***, justin.brody@goucher.edu. Amalgamation Classes with \exists -Closures and a Conjecture of Moss'.

The Hrushovski construction amalgamates members of a class of finite structures (\mathbf{K}, \leq) together in a canonical way to produce a *generic* structure of the class, where \leq is strong-substructure relation on elements of \mathbf{K} . Most examples satisfy the property that for $A, B, C \in \mathbf{K}$ if $A \leq B$ then $A \cap C \leq B \cap C$. This property guarantees the uniqueness of a closure operation in the generic. In this talk we will examine properties of classes which do not have this property but are well-behaved in other ways, which we call having \exists -closures. In particular, we will examine the class (\mathbf{K}_d, \leq_d) of all finite graphs with the understanding that $A \leq_d B$ whenever A is an *isometric* substructure of B (that is, the distance between vertices in A does not go down when A is considered as a subgraph of B). This class has \exists -closures, and we will use this fact to shed some light on a conjecture of Larry Moss' about the class ($\mathbf{K}_d \leq_d$). (Received September 22, 2015)