Alexander Diaz-Lopez and Pamela Estephania Harris* (pamela.harris@usma.edu), 646 Swift Road, West Point, NY 10996, and Erik Insko and Darleen Perez-Lavin. Peak Sets of Classical Coxeter Groups.
We say a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ in the symmetric group \mathfrak{S}_{n} has a peak at index i if $\pi_{i-1}<\pi_{i}>\pi_{i+1}$ and we let $P(\pi)=\{i \in\{1,2, \ldots, n\} \mid i$ is a peak of $\pi\}$. Given a set S of positive integers, we let $P(S ; n)$ denote the subset of \mathfrak{S}_{n} consisting of all permutations π, where $P(\pi)=S$. Billey, Burdzy, and Sagan proved $|P(S ; n)|=p(n) 2^{n-|S|-1}$, where $p(n)$ is a polynomial of degree $\max (S)-1$ and Castro-Velez et al. considered the Coxeter group of type B_{n} as the group of signed permutations on n letters and showed that $\left|P_{B}(S ; n)\right|=p(n) 2^{2 n-|S|-1}$ where $p(n)$ is the same polynomial of degree $\max (S)-1$. In this talk, we embed the Coxeter groups of Lie type C_{n} and D_{n} into $\mathfrak{S}_{2 n}$ and partition these groups into bundles of permutations $\pi_{1} \pi_{2} \cdots \pi_{n} \mid \pi_{n+1} \cdots \pi_{2 n}$ such that $\pi_{1} \pi_{2} \cdots \pi_{n}$ has the same relative order as some permutation $\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in \mathfrak{S}_{n}$. This allows us to count the number of permutations in types C_{n} and D_{n} with peak set S by reducing the enumeration to calculations in the symmetric group and sums across rows of Pascal's triangle. (Received July 28, 2015)

