1116-05-1473 Matthew S Brennan* (brennanm@mit.edu), 450 Memorial Drive, Apt. H416, Cambridge, MA 02139. Ramsey numbers of trees and unicyclic graphs versus odd cycles and fans.

The generalized Ramsey number $R(H, K)$ is the smallest positive integer n such that for any graph G with n vertices either G contains H as a subgraph or its complement \bar{G} contains K as a subgraph. Burr, Erdős, Faudree, Rousseau and Schelp initiated the study of Ramsey numbers of trees versus odd cycles, proving that $R\left(T_{n}, C_{m}\right)=2 n-1$ for all odd $m \geq 3$ and $n \geq 756 m^{10}$, where T_{n} is a tree with n vertices and C_{m} is an odd cycle of length m. They proposed to study the minimum positive integer $n_{0}(m)$ such that this result holds for all $n \geq n_{0}(m)$, as a function of m. We prove that $R\left(T_{n}, C_{m}\right)=2 n-1$ for all odd $m \geq 3$ and $n \geq 64 m$. Combining this with a result of Faudree, Lawrence, Parsons and Schelp yields $n_{0}(m)$ is bounded between two linear functions, thus identifying $n_{0}(m)$ up to a constant factor. We also prove a conjecture of Zhang, Broersma and Chen for $m \geq 9$ that $R\left(T_{n}, F_{m}\right)=2 n-1$ for all $n \geq m^{2}-m+1$ where F_{m} denotes a fan on $2 m+1$ vertices consisting of m triangles sharing a common vertex. We extend this result from trees to unicyclic graphs $U C_{n}$, which are connected graphs with n vertices and a single cycle. (Received September 20, 2015)

