1116-05-2003 Charles Suer* (suerchaj@gmail.com), 3800 Nicholasville Rd. \#9612, Lexington, KY 40503. Color blind index in graphs of very low degree.
Let $c: E(G) \rightarrow[k]$ be an edge-coloring of a graph G, not necessarily proper. For each vertex v, let $\bar{c}(v)=\left(a_{1}, \cdots, a_{k}\right)$, where a_{i} is the number of edges incident to v with color i. Reorder $\bar{c}(v)$ for every v in G in nonincreasing order to obtain $c^{*}(v)$, the color-blind partition of v. When c^{*} induces a proper vertex coloring, that is, $c^{*}(u) \neq c^{*}(v)$ for every edge $u v$ in G, we say that c is color-blind distinguishing. The minimum k for which there exists a color-blind distinguishing edge coloring $c: E(G) \rightarrow[k]$ is the color-blind index of G, denoted $\operatorname{dal}(G)$. We present some previously known results and then demonstrate that determining the color-blind index is more subtle than previously thought. In particular, determining if $\operatorname{dal}(G) \leq 2$ is NP-complete. Time permitting, a connection to 2 -colorable regular hypergraphs will be discussed. (Received September 21, 2015)

