1116-05-461 Aida Abiad, Phil DeOrsey, Leslie Hogben, Kirsten Hogenson* (kahogens@iastate.edu), Franklin Kenter, Jephian C.-H. Lin, Sarah Loeb, Heather Smith and Michael Young. Zero forcing number on the counterprism of graphs.
The zero forcing number of a graph, $Z(G)$, is used in combinatorial matrix theory as an upper bound for the maximum nullity of a graph, $M(G)$. The Graph Complement Conjecture for a graph parameter β of a simple graph G concerns the following inequality: $\beta(G)+\beta(\bar{G}) \geq|G|-2$. This inequality is known to be true for $\beta=Z$, but is still unknown for $\beta=M$. To work toward the Graph Complement Conjecture for M, we define the counterprism of G , denoted $\sqcup G$, to be the graph on $2|G|$ vertices which is the disjoint union of G, \bar{G}, and a perfect matching between the corresponding vertices of G and \bar{G}. We have found that $Z(\sqcup G) \in\{|G|-1,|G|\}$. In this talk, I will discuss this result, as well as some results characterizing graphs G such that $Z(\sqcup G)=|G|-1$ and $Z(\sqcup G)=|G|$. This research was conducted during the 2015 Rocky Mountain-Great Plains Graduate Research Workshop in Combinatorics in Ames, IA. (Received September 02, 2015)

