1116-05-461

Aida Abiad, Phil DeOrsey, Leslie Hogben, Kirsten Hogenson^{*} (kahogens@iastate.edu), Franklin Kenter, Jephian C.-H. Lin, Sarah Loeb, Heather Smith and Michael Young. Zero forcing number on the counterprism of graphs.

The zero forcing number of a graph, Z(G), is used in combinatorial matrix theory as an upper bound for the maximum nullity of a graph, M(G). The Graph Complement Conjecture for a graph parameter β of a simple graph G concerns the following inequality: $\beta(G) + \beta(\overline{G}) \ge |G| - 2$. This inequality is known to be true for $\beta = Z$, but is still unknown for $\beta = M$. To work toward the Graph Complement Conjecture for M, we define the counterprism of G, denoted $\sqcup G$, to be the graph on 2|G| vertices which is the disjoint union of G, \overline{G} , and a perfect matching between the corresponding vertices of G and \overline{G} . We have found that $Z(\sqcup G) \in \{|G| - 1, |G|\}$. In this talk, I will discuss this result, as well as some results characterizing graphs G such that $Z(\sqcup G) = |G| - 1$ and $Z(\sqcup G) = |G|$. This research was conducted during the 2015 Rocky Mountain-Great Plains Graduate Research Workshop in Combinatorics in Ames, IA. (Received September 02, 2015)