McAllister Bldg., University Park, PA 16802. A Refinement of the Alladi-Schur Theorem.
In 1926, I. Schur proved that if A(n) equals the number of partitions of n into parts congruent to 1 or 5 modulo 6, and $B(n)$ equals the number of partitions of n in which any two parts differ by at least 3 and multiples of 3 differ by more than 3 , then $\mathrm{A}(\mathrm{n})=\mathrm{B}(\mathrm{n})$. In the 1990 's K. Alladi noted that if $\mathrm{C}(\mathrm{n})$ equals the number of partitions of n into odd parts none repeated more than twice, then also $\mathrm{C}(\mathrm{n})=\mathrm{B}(\mathrm{n})$. We shall consider the following refinement of the Alladi-Schur theorem and its implications: THEOREM. Let $\mathrm{C}(\mathrm{m}, \mathrm{n})$ denote the number of partitions among those enumerated by $\mathrm{C}(\mathrm{n})$ that have exactly m parts. Let $B(m, n)$ denote the number of partitions among those enumerated by $B(n)$ where the number of odd parts plus twice the number of even parts equals m. The $B(m, n)=C(m, n)$. (Received September 07, 2015)

