1116-11-144 Alexi Block Gorman (ablockgo@wellesley.edu), Tyler Genao (tgenao2013@fau.edu), Heesu Hwang (hshwang@princeton.edu), Noam Kantor* (noam.kantor@emory.edu), Sarah Parsons (parssy12@wfu.edu) and Jeremy Rouse (rouseja@wfu.edu). The density of primes dividing a certain non-linear recurrence sequence.
Define the sequence $\left\{b_{n}\right\}$ by $b_{0}=1, b_{1}=2, b_{2}=1, b_{3}=-3$, and

$$
b_{n}=\left\{\begin{array}{lll}
\frac{b_{n-1} b_{n-3}-b_{n-2}^{2}}{b_{n-4}} & \text { if } n \neq 2 & (\bmod 3) \\
\frac{b_{n-1} b_{n-3}-3 b_{n-2}^{2}}{b_{n-4}} & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

We relate this sequence $\left\{b_{n}\right\}$ to the coordinates of points on the elliptic curve $E: y^{2}+y=x^{3}-3 x+4$. We use Galois representations attached to E to prove that the density of primes dividing a term in this sequence is equal to $\frac{179}{336}$. Furthermore, we describe an infinite family of elliptic curves whose Galois images match that of E. (Received August 06, 2015)

