1116-13-834 Claudia Polini* (cpolini@nd.edu), 255 Hurley Building, Department of Mathematics,
University of Notre Dame, Notre Dame, IN 46556-5641. Rees rings and singularities of curves.
Let f_{1}, \ldots, f_{n} be forms of the same degree in the polynomial ring $R=k\left[x_{1}, x_{2}\right]$ that define a regular map $\Phi: \mathbb{P}^{1} \rightarrow$ \mathbb{P}^{n-1}. The bi-homogeneous coordinate ring of the graph of Φ as a subvariety of $\mathbb{P}^{1} \times \mathbb{P}^{n-1}$ is the Rees algebra $\mathcal{R}(I)=$ $R\left[f_{1} t, \ldots, f_{n} t\right]$ of the ideal $I=\left(f_{1}, \ldots, f_{n}\right) \subset R$, whereas the homogeneous coordinate ring of the closed image of Φ, the curve $X \subset \mathbb{P}^{1}$ parametrized by f_{1}, \ldots, f_{n} is the subalgebra $k\left[f_{1} t, \ldots, f_{n} t\right] \cong \mathcal{R}(I) \otimes k$. It is a fundamental problem in elimination theory, commutative algebra, algebraic geometry, and applied mathematics to determine the defining ideals of these rings. Since this is a very ambitious goal, an important first step is to determine or at least bound the (bi)-degrees of the defining equations. In this talk I will survey several approaches to solve this problem. In addition, I will explain how features of the defining ideals correspond to the types and the constellation of the singularities of the curve X. (Received September 14, 2015)

