Thomas Craven* (tom@math.hawaii.edu). Recent progress on the question of whether rapidly decreasing sequences are complex zero decreasing sequences. Preliminary report.
A sequence of nonnegative real numbers $\Gamma=\left\{\gamma_{k}\right\}, k=0,1,2,3, \ldots$ is said to be a complex zero decreasing sequence if for any real polynomial $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$, the polynomial $\Gamma[p(x)]=\sum_{k=0}^{n} \gamma_{k} a_{k} x^{k}$ has no more nonreal zeros than $p(x)$. These sequences have been completely characterized if they do not decrease more rapidly than can be interpolated by an entire function in the Laguerre-Pólya class. In particular, the sequences satisfying $\gamma_{k}^{2} \geq 4 \gamma_{k-1} \gamma_{k+1}$, know as rapidly decreasing sequences, still pose an open problem. They are known to work if $p(x)$ has only real zeros. We will discuss known results, experiments and a possible approach to a proof. (Received September 21, 2015)

