36088. An L^{2} Inequality for Polynomials.

Let $\mathcal{M}_{2}(g ; \rho)$ denote the L^{2} mean of g on the circle $|z|=\rho$. We prove that for any polynomial $f(z):=\sum_{k=0}^{n} a_{k} z^{k}$ of degree at most n, with $\left|a_{n-k}\right|=\left|a_{k}\right|$ for $k=0,1, \ldots, n$, the ratio $\mathcal{M}_{2}\left(f^{\prime} ; \rho\right) / \mathcal{M}_{2}(f ; 1)$ is maximized by $f(z):=1+z^{n}$ for all $\rho \in\left[2^{-1 / n}, \infty\right)$. At least in the case where n is even, the restriction on ρ cannot be relaxed. (Received September 22, 2015)

