Olivia Bennett, Daniel Brumley, Britney Hopkins, Kristi Karber and Thomas

Milligan*, 100 N. University Dr, Dept. of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK 73034. The Multiplicity of Solutions for a Class of Fourth Order Differential Equations.
Making use of the Guo-Krasnosel'skii Fixed Point Theorem, we establish the existence of multiple solutions for the fourth order differential equation, $u^{(4)}=\lambda h\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right)$, for $t \in(0,1)$ with right focal boundary conditions $u(0)=u^{\prime \prime}(0)=0, u^{\prime}(1)=a$, and $u^{\prime \prime \prime}(1)=-b$, where $h:[0,1] \times[0, \infty)^{2} \times(-\infty, 0]^{2} \rightarrow[0, \infty), a, b, \lambda \geq 0$, and $a+b>0$. Our technique involves examining an analogous system of second order differential equations satisfying homogeneous boundary conditions prior to applying the aforementioned fixed point theorem. (Received September 22, 2015)

