Michael Goldberg*, Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, and William Green, Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN 47803. L^p Bounds for Wave Operators for the Schrödinger Equation with a Threshold Eigenvalue.

The wave operators W_{\pm} are a valuable tool for linking properties of the Schrödinger evolution $e^{itH}P_{ac}(H)$ to properties of the corresophding free evolution $e^{-it\Delta}$. We consider operators of the form $H = -\Delta + V(x)$ in \mathbb{R}^n , $n \ge 5$ which have an eigenvalue at zero. The potential is assumed to decay at the rate $|V(x)| \le C(1+|x|)^{-(n+3+\varepsilon)}$.

It was recently proved by Yajima that the wave operators are bounded on $L^p(\mathbb{R}^n)$ for all 1 . We recover this result, including the <math>p = 1 endpoint, and show that the upper end of the range can be expanded if the eigenspace satisfies certain cancellation conditions: If $\int V\phi \, dx = 0$ for each eigenfunction ϕ , then L^p -bundedness of wave operators holds for $1 \le p < n$. If the first moments of $V\phi$ also vanish for each eigenfunction, then L^p -boundedness of wave operators holds for $1 \le p < \infty$. (Received September 10, 2015)