Let f be a rational endomorphism of a complex algebraic surface X, and suppose that f has a fixed point x. Analyzing the dynamics of f near such a fixed point is often an essential step in understanding the global dynamical behavior of f on X. In this talk, I will describe a nonarchimedean approach to analyzing the local dynamics in the case when f is noninvertible near x. Instead of considering directly the dynamics of f near x in X, we will instead equip the field of complex numbers with the trivial absolute value and study the local dynamics of f near x in the corresponding Berkovich analytification of X. This will allow us to understand the dynamics of f on certain birationally equivalent models of X, and in turn deduce concrete information about the original (archimedean) dynamical system. Our main application is that one can almost always find modifications of X over x on which f exhibits a desirable "algebraic stability" property. (Received September 22, 2015)