1116-42-1681 Leonid Slavin* (leonid.slavin@uc.edu) and Vasily Vasyunin. The John-Nirenberg constant of BMO^p.

For p > 0, BMO^{*p*} is the space of all functions φ for which the quantity $\|\varphi\|_{\text{BMOP}} := \sup_{\text{interval } Q} \left(\frac{1}{|Q|} \int_{Q} |\varphi - \frac{1}{|Q|} \int_{Q} \varphi|^{p}\right)^{1/p}$ is finite. The John–Nirenberg constant of BMO^{*p*}, $\varepsilon_{0}(p)$, is the supremum of all $c_{0} > 0$ for which there exists a $C_{1} > 0$ such that for any interval Q and any $\lambda \geq 0$,

$$\frac{1}{|Q|} |\{t \in Q : |\varphi(t) - \frac{1}{|Q|} \int_Q \varphi| \ge \lambda\}| \le C_1 e^{-c_0 \lambda/\|\varphi\|_{\text{BMOP}}}.$$

This constant has proved difficult to compute: until recently, the only known cases were p = 1 and p = 2. We deal with this difficulty by considering the dual problem of estimating (from below) the BMO^p norms of logarithms of A_{∞} weights. As a result, we obtain $\varepsilon_0(p)$ for all $p \ge 1$ and also show that for $1 \le p \le 2$ it is attained as c_0 above.

The proof relies on the computation of the appropriate Bellman functions, which in this setting are optimal convex solutions of the homogeneous Monge–Ampère equation on a non-convex plane domain. The geometry of these solutions is substantially different for different ranges of p. Part of the work is joint with Vasily Vasyunin. (Received September 21, 2015)