1116-47-385 **Pamela Gorkin*** (pgorkin@bucknell.edu), Department of Mathematics, Bucknell University, Lewisburg, PA 17837, and Brett D. Wick. *Thin Sequences and Model Spaces.*

Let (z_n) be a sequence in the open unit disk and T_p an operator taking an H^p function f to the sequence $(f(z_n)(1-|z_n|)^{1/p})$. Shapiro and Shields found conditions for the sequence to be interpolating; e.g., the range $T_p(H^p)$ equals the sequence space ℓ^p and the condition is Carleson's condition:

$$\inf_{k} \prod_{n \neq k} \left| \frac{z_k - z_n}{1 - \overline{z_n} z_k} \right| \ge \delta > 0$$

We consider interpolating sequences for model spaces, $K_{\Theta} := H^2 \ominus \theta H^2$, associated with an inner function θ . If we have a sequence for which the restriction of T_2 maps K_{θ} onto ℓ^2 , then T_2 will map H^2 onto ℓ^2 . For which sequences can we be sure that if $T_2 : H^2 \to \ell^2$ is surjective, then the restriction $T_2 : K_{\theta} \to \ell^2$ is surjective?

We answer this for the class of *thin sequences* – interpolating sequences for which $\lim_{k\to\infty} \prod_{j;j\neq k} \left| \frac{z_j - z_k}{1 - \overline{z_j} z_k} \right| = 1$. (Received August 29, 2015)