1116-47-826 Benjamin Peter Russo* (russo5@ufl.edu). Sub-Jordan Operator Tuples.
An operator T is called a 3-isometry if there exists a $B_{1}\left(T^{*}, T\right)$ and $B_{2}\left(T^{*}, T\right)$ such that

$$
Q_{T}(n)=T^{* n} T^{n}=I+n B_{1}\left(T^{*}, T\right)+n^{2} B_{2}\left(T^{*}, T\right)
$$

for all natural numbers n. A related class of operators, called 3-symmetric operators, have a similar definition. These operators have a connections with Sturm-Liouville theory and are natural generalizations of isometries and self-adjoint operators. We call an operator J a Jordan operator of order 2 if $J=A+N$, where A is either unitary or self-adjoint, N is nilpotent order 2, and A and N commute. As shown in the work of Agler, Ball and Helton, and joint work with McCullough, 3 -symmetric and 3 -isometric operators can be modeled as Sub-Jordan operators. In this talk we discuss the extension of these theorems to the multi-variable case in relation to a conjecture of Ball and Helton. More specifically, we cover connections between the lifting theorems via spectral theory and the necessity of an extra condition unique to the multi-variable case. (Received September 13, 2015)

