1116-60-1700 Louigi Addario-Berry* (louigi.addario@mcgill.ca), Montreal, Quebec H3A2K6, Canada. Most trees are short and fat.
Let T be any Galton-Watson tree. Write $\operatorname{vol}(\mathrm{T})$ for the volume of T (the number of nodes), ht(T$)$ for the height of T (the greatest distance of any node from the root) and $\operatorname{wid}(\mathrm{T})$ for the width of T (the greatest number of nodes at any level). We study the relation between $\operatorname{vol}(\mathrm{T}), \mathrm{ht}(\mathrm{T})$ and $\operatorname{wid}(\mathrm{T})$.

In the case when the offspring distribution $p=\left(p_{i}, i \geq 0\right)$ has mean one and finite variance, both ht (T) and $\operatorname{wid}(T)$ are typically of order $\operatorname{vol}(T)^{1 / 2}$, and have sub-Gaussian upper tails on this scale (A-B, Devroye and Janson, 2013). Heuristically, as the tail of the offspring distribution becomes heavier, the tree T becomes "shorter and bushier". We prove a collection of theorems which can be viewed as justifying this heuristic. In particular, we show that the random variable $h t(T) / \operatorname{wid}(T)$ always has sub-exponential tails, and the random variable $h t(T) / v o l\}(T)^{1 / 2}$ always has sub-Gaussian tails.
(Received September 21, 2015)

