1116-68-507 Jarod Alper (jarod.alper@anu.edu.au), Tristram Bogart* (tc.bogart22@uniandes.edu.co) and Mauricio Velasco (mvelasco@uniandes.edu.co). A Lower Bound for the Determinantal Complexity of a Hypersurface.
Given a family of polynomials $\left\{p_{n}\right\}$, how long does it take to compute the values of p_{n} as a function of n ? If det_{n} is the determinant of an n by n matrix of indeterminates, then the values of det_{n} can be calculated quickly via Gaussian elimination even though the determinant has n ! terms. So one way to show that another family $\left\{p_{n}\right\}$ is efficiently calculable is to reduce p_{n} to $\operatorname{det}_{m(n)}$, where $m(n)$ does not grow too rapidly with n. Leslie Valiant conjectured in 1979 that no efficient reduction is possible for the family of permanents $\left\{\operatorname{perm}_{n}\right\}$, which are superficially similar to determinants but much less well-behaved. It is known that a reduction is possible with $m(n)$ exponential in n, but the best known lower bound is quadratic in n. We prove a general result that shows among other things that for perm $_{3}$, the known upper bound of 7 is tight. (Received September 04, 2015)

