1116-68-507 Jarod Alper (jarod.alper@anu.edu.au), Tristram Bogart* (tc.bogart22@uniandes.edu.co) and Mauricio Velasco (mvelasco@uniandes.edu.co). A Lower Bound for the Determinantal Complexity of a Hypersurface.

Given a family of polynomials $\{p_n\}$, how long does it take to compute the values of p_n as a function of n? If det_n is the determinant of an n by n matrix of indeterminates, then the values of det_n can be calculated quickly via Gaussian elimination even though the determinant has n! terms. So one way to show that another family $\{p_n\}$ is efficiently calculable is to reduce p_n to det_{m(n)}, where m(n) does not grow too rapidly with n. Leslie Valiant conjectured in 1979 that no efficient reduction is possible for the family of *permanents* $\{\text{perm}_n\}$, which are superficially similar to determinants but much less well-behaved. It is known that a reduction is possible with m(n) exponential in n, but the best known lower bound is quadratic in n. We prove a general result that shows among other things that for perm₃, the known upper bound of 7 is tight. (Received September 04, 2015)