1116-81-983 **Phillip R. Dukes*** (phillip.dukes@utrgv.edu), Phillip R. Dukes, University of Texas Rio Grande Valley, Brownsville, TX 78520. *Continuous-time quantum walks over simply connected* graphs, amplitudes and invariants.

We examine the time dependent amplitude $\phi_i(t)$ at each vertex *i* of a CTQW on a variety of simply connected graphs. The Lissajous curve of the real vs. imaginary parts of each $\phi_i(t)$ reveals interesting shapes of the space of time-accessible amplitudes. We find two invariants of CTQW's. First, considering the rate at which each amplitude evolves in time the quantity $T = \sum_{i=0}^{n-1} \left| \frac{d\phi_i(t)}{dt} \right|^2$ is time invariant. The value of *T* for any initial state can be minimized with respect to a global phase factor $e^{i\theta t}$ to some value T_{min} . An operator for T_{min} is defined. For any simply connected graph *g* the highest possible value of T_{min} with respect to the initial state is found to be $T_{min}^{max} = \left(\frac{\lambda_{max}}{2}\right)^2$ where λ_{max} is the maximum eigenvalue in the spectrum of *g*. A second invariant is found in the time-dependent probability distribution $P_i(t) = |\phi_i(t)|^2$ of any initial state satisfying T_{min}^{max} , with these conditions $\sum_{i=0}^{n-1} \left(P_i^{max} - P_i^{min} \right)^2 = \frac{4}{n}$ for all simply connected graphs of *n* vertices. (Received September 16, 2015)