1116-VB-797Laura Dawn Croyle* (lauradcroyle@gmail.com), 4161 Victoria Way, Apt 18105, Lexington,
KY 40515. L^p solutions to the mixed boundary value problem in C^2 domains.We look at the mixed boundary value problem for the Laplacian in a bounded $C^2(\mathbf{R}^n)$ domain, given by

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ u = 0 & \text{on } D \\ \frac{\partial u}{\partial \nu} = g & \text{on } N \end{cases}$$
(MP)

Here, we have a Lipschitz dissection of the boundary given by disjoint sets, N and D, with Neumann and Dirichlet data respectively. Expanding on work done by Ott and Brown, we find a larger range of values of p, 1 , for which the $<math>L^p$ mixed problem has a unique solution with the non-tangential maximal function of the gradient in $L^p(\partial\Omega)$. (Received September 13, 2015)