1116-VE-2341 Douglas D Knowles* (ddk4@geneseo.edu), 11 Town Pump Circle, Spencerport, NY 14559. Numerical Ranges over Finite Fields.
Let p be a prime number congruent to 3 modulo 4. We will work in the finite field $\mathbf{F}_{p}[i]=\left\{a+b i \mid a, b \in \mathbf{F}_{p}\right\}$, where $\mathbf{F}_{p}=\{0,1, \ldots, p-1\}$ and $i=\sqrt{p-1}=\sqrt{-1}$. Let A be a matrix with entries from $\mathbf{F}_{p}[i]$. Let \bar{x}^{T} denote the conjugate transpose of x. Consider a number $k \in \mathbf{F}_{p}$. Let S_{k} be the set of all vectors x with entries in $\mathbf{F}_{p}[i]$ where the product $\bar{x}^{T} x=k$. The author has created a definition of a new concept, the k-numerical range $W_{k}(A)$, which is the set of numbers of the form $\bar{x}^{T} A x$, for all x in S_{k}. We investigate the properties of these k-numerical ranges, and explore the fundamental differences between $W_{0}(A)$ and $W_{k}(A)$ for nonzero k. We will then discuss our pioneering work in classifying the shapes $W_{1}(A)$ can take. This includes the author's proof that $W_{1}(A)$ can be a union of pairwise disjoint lines.
(Received September 22, 2015)

