Yeon June Kang*, yeonjunekang@gmail.com. Triangulations via Iterated Largest Angle Bisection.
For a given triangle $\triangle A B C$, with $\angle A \geq \angle B \geq \angle C$, the largest angle bisection procedure consists in constructing $A D$, the angle bisector of angle $\angle A$, and replacing $\triangle A B C$ by the two newly formed triangles, $\triangle A B D$ and $\triangle A C D$.

Let $\triangle_{01}$ be a given triangle. Bisect $\triangle_{01}$ into two triangles, $\triangle_{11}$ and $\triangle_{12}$. Next, bisect each $\triangle_{1 i}, i=1,2$, forming four new triangles $\triangle_{2 i}, i=1,2,3,4$. Continue in this fashion. For every nonnegative integer $n, T_{n}=\left\{\triangle_{n i}: 1 \leq i \leq 2^{n}\right\}$, so $T_{n}$ is the set of $2^{n}$ triangles created after the $n$-th iteration.

Define $m_{n}$, the mesh of $T_{n}$, as the length of the longest side among the sides of all triangles in $T_{n}$. Also, let $\gamma_{n}$ be the smallest angle among the angles of the triangles in $T_{n}$. We prove the following results:

- $\gamma_{n} \geq \min \left(\gamma_{0}, 30^{\circ}\right)$.
- $m_{n} \rightarrow 0$ as $n \rightarrow \infty$.
- Unless $\triangle_{01}$ is an isosceles right-angle triangle, the set $\bigcup_{n=0}^{\infty} T_{n}$ contains infinitely many triangles no two of which are similar.
(Received June 02, 2015)

