Sarah E. Vigliotta* (svigliotta@wesleyan.edu). An algorithm for the independence number of incidence graphs.
In 1993, Brualdi and Massey defined the incidence graph of G, $\operatorname{Inc}(G)$, to be the graph whose vertices are the set of incidences - pairs of the form (u, e) where u is a vertex of G and e is an edge of G containing u as an endpoint - and where two incidences (u, e) and (v, f) are adjacent if (i) $u=v$, (ii) $e=f$ or (iii) $u v=e$ or $u v=f$. We will describe an algorithm to find a maximum independent set of $\operatorname{Inc}(T)$, where T is a rooted tree. Finally, we give some generalizations of this algorithm to find the independence number of incidence graphs of graphs other than trees. (Received September 16, 2015)

