1116-VF-1987 Miaomiao Han* (mahan@mix.wvu.edu) and Rong Luo (rongluo2007@gmail.com). Neighbor sum distinguishing total coloring of graphs. Preliminary report.

A proper k-total coloring of a graph G is a mapping from $V(G) \cup E(G)$ to $\{1, 2, \dots, k\}$ such that no adjacent or incident elements in $V(G) \cup E(G)$ receive the same color. Let m(v) denote the sum of colors on the edges incident with v and the color on vertex v. A proper k-total coloring of G is called neighbor sum distinguishing if $m(u) \neq m(v)$ for each edge $uv \in E(G)$. Let $\chi_{\Sigma}^t(G)$ be the neighbor sum distinguishing total chromatic of a graph G. Pilśniak and Woźniak proposed the conjecture that for any graph G, $\chi_{\Sigma}^t(G) \leq \Delta(G) + 3$. In this paper, we obtain that if G is a graph with treewidth $l \geq 3$, and $\Delta(G) \geq \max\{8, 3l-2\}$, then $\chi_{\Sigma}^t(G) \leq \Delta(G) + l - 1$. (Received September 21, 2015)