1116-VF-2367 Henry E Escuadro* (escuadro@juniata.edu), Ian Garces, Agnes Garciano, Reginaldo Marcelo and Mari-Jo Ruiz. On the Star Arboricity of the Zero-Divisor Graph $\Gamma\left(Z_{p^{n}}\right)$.
A star forest is a forest each of whose components is a star. The star arboricity of a graph G, denoted by $s t(G)$, is the minimum number of star forests whose union covers all the edges of G. A nonzero element of a commutative ring R with unity is said to be a zero-divisor of R if there exist a nonzero element $y \in R$ such that $x y=0$. Given a ring R with unity, the zero-divisor graph of R, denoted by $\Gamma(R)$, is the graph whose vertex set consists of the zero divisors of R and two vertices $x, y \in V(\Gamma(R))$ are adjacent if and only if $x y=0$ in R. This paper investigates the star arboricities of the zero divisor graphs $\Gamma\left(Z_{p^{n}}\right)$ where $n, p \in N$ and p is a prime. In particular, we give bounds for $s t\left(\Gamma\left(Z_{p^{n}}\right)\right)$ and determine the values of $s t\left(\Gamma\left(Z_{p^{n}}\right)\right)$ when n is even. (Received September 22, 2015)

