1074-20-197 Kenneth W Johnson* (kwj1@psu.edu). 2-S-rings of groups and generalizations. Preliminary report.

The S-ring arising from the orbits of an action of a permutation group M on a finite group G is familiar, the most basic example being the S-ring of conjugacy classes of a group which gave rise to Frobenius' first definition of group character theory. The orbits of $G \times S_k$ acting on k-tuples of elements of G, with an element $g \in G$ acting by simultaneous conjugation and an element σ in the symmetric group S_k acting by

$$\sigma(g_1, g_2, ..., g_k) = (g_{\sigma(1)}, g_{\sigma(2)}, ..., g_{\sigma(k)}),$$

arise naturally in the theory of higher characters.

For the case k = 2 Humphries and his students have studied the 2-S-ring of a group. Explicitly this consists of the subalgebra of $\mathbb{Z}(G \times G)$ which is generated by the element sums of the orbits described above. It is not necessarily commutative. They have proved that if groups G_1 and G_2 have the same irreducible 2-characters and isomorphic 2-S-rings then G_1 and G_2 have the same derived length. I will discuss how there are more general coherent configurations which arise, and also conditions for which the symmetrization of such coherent configurations are association schemes. (Received August 21, 2011)