The model companion of the class of pseudocomplemented semilattices is finitely axiomatizable.

For a class K of algebras $A(K)$ and $E(K)$ denote its algebraically and existentially closed members. Besides (semantically) determining its members the question whether these classes can be finitely axiomatized is of interest.

In this talk we investigate PCS, the class of pseudocomplemented semilattices (pcs), in this respect. We will first show how a finite axiomatization of $A(\text{PCS})$ can be obtained using the property: A pcs P is algebraically closed iff every finite subpcs of P can be extended within P to $2^r \times (\hat{A})^s$, 2 being the two element Boolean algebra, \hat{A} the countable atomless Boolean algebra with a new top element. This extendability property is described with finitely many first-order sentences.

We will then narrow down existential closedness of a pcs P assuming P is already algebraically closed. A description of this characterization with finitely many formulas together with the above finite axiomatization of $A(\text{PCS})$ gives us the finite axiomatization of $E(\text{PCS})$. (Received November 07, 2011)