The problem of finding configurations that are optimally-distributed on a set appears in a number of guises including best-packing problems, coding theory, geometrical modeling, statistical sampling, radial basis approximation and golf-ball design. We consider the geometry of \(N \)-point configurations \(\{x_i\}_{i=1}^N \) on a compact set \(A \) (with a metric \(m \)) that minimize a weighted Riesz \(s \)-energy functional of the form

\[
\sum_{i \neq j} \frac{w(x_i, x_j)}{m(x_i, x_j)^s}
\]

for a given weight function \(w \) on \(A \times A \) and a parameter \(s > 0 \).

Specifically, if \(A \) supports an Ahlfors \(\alpha \)-regular measure, we prove that whenever \(s > \alpha \), any sequence of weighted minimal Riesz \(s \)-energy \(N \)-point configurations on \(A \) (for ‘nice’ weights) is quasi-uniform in the sense that the ratios of its mesh norm to separation distance remain bounded as \(N \) grows. Furthermore, if \(A \) is an \(\alpha \)-rectifiable compact subset of Euclidean space with positive and finite \(\alpha \)-dimensional Hausdorff measure, one may choose the weight \(w \) to generate a quasi-uniform sequence of configurations that have (as \(N \to \infty \)) a prescribed positive continuous limit distribution with respect to \(\alpha \)-dimensional Hausdorff measure. This is joint work with E. Saff and D. Hardin. (Received December 13, 2011)