Timothy D. LeSaulnier and Douglas B. West*, Mathematics Department, University of Illinois, Urbana, IL 61801-2975. Rainbow edge-coloring and rainbow domination.
Let G be an edge-colored graph with n vertices. A rainbow subgraph is a subgraph whose edges have distinct colors. The rainbow edge-chromatic number of G, written $\hat{\chi}^{\prime}(G)$, is the minimum number of rainbow matchings needed to cover $E(G)$. An edge-colored graph is t-tolerant if it contains no monochromatic star with $t+1$ edges. If G is t-tolerant, then $\hat{\chi}^{\prime}(G)<t(t+1) n \ln n$, and examples exist with $\hat{\chi}^{\prime}(G) \geq \frac{t}{2}(n-1)$. The rainbow domination number, written $\hat{\gamma}(G)$, is the minimum number of disjoint rainbow stars needed to cover $V(G)$. For t-tolerant edge-colored n-vertex graphs, we generalize classical bounds on the domination number: (1) $\hat{\gamma}(G) \leq \frac{1+\ln k}{k} n$ (where $k=\frac{\delta(G)}{t}+1$), and (2) $\hat{\gamma}(G) \leq \frac{t}{t+1} n$ when G has no isolated vertices. We also characterize the edge-colored graphs achieving equality in the latter bound. (Received January 28, 2012)

