1080-05-87 Oleg Borodin and Alexandr Kostochka*, kostochk@math.uiuc.edu. Improper 2-colorings of sparse graphs. Preliminary report.
We consider one of the simplest kinds of improper colorings - colorings with two colors. A graph G is (j, k)-colorable if its vertices can be partitioned into subsets V_{1} and V_{2} such that in $G\left[V_{1}\right]$ every vertex has degree at most j and in $G\left[V_{2}\right]$ every vertex has degree at most k. We prove that every graph with the maximum average degree at most $\frac{12}{5}$ is $(1,0)$-colorable and that if $k \geq 2 j+2$, then every graph with maximum average degree at most $2\left(2-\frac{k+2}{(j+2)(k+1)}\right)$ is (j, k)-colorable. Both bounds are sharp. (Received January 11, 2012)

