Joseph P.S. Kung* (kung@unt.edu), Department of Mathematics, P.O. Box 311430, Denton, TX 76203-1430. Is the bicycle dimension of a matrix an invariant of the field and the column matroid? Preliminary report.
A matrix H is orthogonally dual to the matrix G if H and G have the same column set E, H is a matrix of rank $|E|-\operatorname{rank}(G)$, and if u is a row of G and v is a row of H, the inner product $\langle u, v\rangle=\sum_{e \in E} u_{e} v_{e}$ equals 0 . The bicycle dimension $d(G)$ of a matrix G with column set E is the dimension of the intersection of the row space of G and the row space of H. The bicycle dimension is always 0 over a field of characteristic 0 . We will discuss the question whether the bicycle dimension of G is determined by the field and the column matroid of G. (Received January 12, 2012)

