The list version of Borodin-Kostochka Conjecture for graphs with large maximum degree.

Brooks’ Theorem states that for a graph G with maximum degree $\Delta(G)$ at least 3, the chromatic number is at most $\Delta(G)$ when the clique number is at most $\Delta(G)$. Vizing proved that the list chromatic number is also at most $\Delta(G)$ under the same conditions. Borodin and Kostochka conjectured that a graph G with maximum degree at least 9 must be $(\Delta(G) - 1)$-colorable when the clique number is at most $\Delta(G) - 1$; this was proven for graphs with maximum degree at least 10^{14} by Reed. In this paper, we prove an analogous result for the list chromatic number; namely, we prove that a graph G with $\Delta(G) \geq 10^{20}$ is $(\Delta(G) - 1)$-choosable when the clique number is at most $\Delta(G) - 1$. This is joint work with H. A. Kierstead, L. Rabern, and B. Reed. (Received February 18, 2013)