Let Γ denote a Q-polynomial distance-regular graph with vertex set X. We assume that Γ has q-Racah type and contains a Delsarte clique C. Fix a vertex $x \in C$. We partition X according to the path-length distance to both x and X. This is an equitable partition. For each cell in this partition, consider the corresponding characteristic vector. These characteristic vectors form a basis for a \mathbb{C}-vector space W.

The universal double affine Hecke algebra of type (C_1', C_1) is the \mathbb{C}-algebra \hat{H}_q defined by generators $\{t_n^\pm\}_{n=0}^3$ and relations (i) $t_n t_n^{-1} = t_n^{-1} t_n = 1$; (ii) $t_n + t_n^{-1}$ is central; (iii) $t_0 t_1 t_2 t_3 = q^{-1/2}$. In this talk, we display an \hat{H}_q-module structure for W. (Received February 20, 2013)