1135-00-2009 Gwen Spencer* (gwenspencer@gmail.com) and Greg Clark. How Low Can You Go? On the Biplanar Crossing Number of the Hypercube.
Suppose that for $G=(V, E)$, the edge set E is partitioned into two disjoint subsets, E_{1} and E_{2}, and let $G_{i}=\left(V, E_{i}\right)$. Each G_{i} has some crossing number $\operatorname{cr}\left(G_{i}\right)$. The Biplanar Crossing Number of G is the minimum of $\operatorname{cr}\left(G_{1}\right)+\operatorname{cr}\left(G_{2}\right)$ over all partitions of E. Crossing Numbers for hypercubes are poorly understood (for $k \geq 5$, the crossing number of the k-cube is unknown), and the best biplanar drawings known for hypercubes rely on highly-symmetric partitions of E into smaller hypercubes (or modified hypercubes). I will mention some new results on the Biplanar Crossing Number of low-dimensional hypercubes. (Received September 25, 2017)

