1135-00-2009 **Gwen Spencer*** (gwenspencer@gmail.com) and **Greg Clark**. How Low Can You Go? On the Biplanar Crossing Number of the Hypercube.

Suppose that for G = (V, E), the edge set E is partitioned into two disjoint subsets, E_1 and E_2 , and let $G_i = (V, E_i)$. Each G_i has some crossing number $cr(G_i)$. The *Biplanar Crossing Number* of G is the minimum of $cr(G_1) + cr(G_2)$ over all partitions of E. Crossing Numbers for hypercubes are poorly understood (for $k \ge 5$, the crossing number of the k-cube is unknown), and the best biplanar drawings known for hypercubes rely on highly-symmetric partitions of Einto smaller hypercubes (or modified hypercubes). I will mention some new results on the *Biplanar Crossing Number* of low-dimensional hypercubes. (Received September 25, 2017)