1135-05-1105 Joshua Fallon* (jfallo3@1su.edu), jfallo3@lsu.edu, and Kirsten Hogenson, Lauren Keough, Mario Lomeli, Marcus Schaefer and Pablo Soberon Bravo. On The Maximum Rectilinear Crossing Number of Subdivided Stars.
Given a graph G, its maximum rectilinear crossing number $\overline{\mathrm{mcr}}(G)$ is the maximum number of edge crossings that can appear in a drawing of G in the plane with each edge a line segment. It is trivially bounded above by the graph's thrackle bound, which is the number of non-consecutive edge pairs. For a caterpillar $T, \overline{\mathrm{mcr}}(T)$ and the thrackle bound are equal. If a tree is not a caterpillar, it must contain a ubsgraph S isomorphic to $K_{1,3}$ with each edge subdivided once. Woodall has shown that no rectilinear drawing of S achieves the thrackle bound. We present some results on more general subdivided stars to contribute to the understanding of maximum rectilinear crossing number of trees. (Received September 22, 2017)

