1135-05-2544 **Joungmin Song*** (songj@gist.ac.kr), Gwangju Institute of Science and Technology, Cheomdan Gwagiro 123, GIST College Bldg A-410, Gwangju, 61005, South Korea. *Characteristic polynomial* of hyperplane arrangements via enumerative combinatorics and finite field method.

A hyperplane arrangement is a finite set of affine hyperplanes in a real affine space. Let \mathcal{J}_n be the hyperplane arrangement consisting of all hyperplanes (or walls) H_{ij} , 0_k , 1_l , where, for each i, j, k, and $l \in \{1, 2, ..., n\}$,

$$H_{ij} := \{ \mathbf{x} \in \mathbb{R}^n \mid x_i + x_j = 1 \} = H_{ji}$$

and

$$0_k := \{ \mathbf{x} \in \mathbb{R}^n \mid x_k = 0 \}, \text{ and } 1_l := \{ \mathbf{x} \in \mathbb{R}^n \mid x_l = 1 \}.$$

The number of the *regions*, i.e., the connected components of $\mathbb{R}^n \setminus \bigcup_{H \in \mathcal{J}_n} H$ is given by the characteristic polynomial $\chi_n(t)$. We formulate $\chi_n(t)$ via enumerative combinatorics and finite field method. We give a direction forward generalizing this process to \mathcal{H}_n , whose walls are of the form

$$w_S = \left\{ \mathbf{x} \in \mathbb{R}^n \; \middle| \; \sum_{i \in S} x_i = 1 \right\}.$$

(Received September 26, 2017)