James J. Madden* (madden@math.lsu.edu), 222 Prescott Hall, Louisiana State Univ., Baton Rouge, LA 70803. On the Distribution of Maximal Runs in Binary Words. Preliminary report. Let R be a finite set of positive integers and let K be a function from R to the natural numbers. Let $W(n, R, K)$ denote the set of binary words of length n that, for all $r \in R$, contain exactly $K(r)$ maximal subwords of r identical consecutive symbols. We exhibit the generating function for the cardinality of $W(n, R, K)$. We also express, by means of generating functions, the probability that a binary word of length n produced by a Markov process (with specified parameters) belongs to $W(n, R, K)$. All these results generalize a famous result of DeMoive, Doctrine of Chances, Second Edition, Problem LXXXVIII: "To find the Probability of throwing a Chance assigned a given number of times without intermission, in any given number of Trials." (Received September 26, 2017)

