Huseyin Acan*, huseyin.acan@rutgers.edu, and Jeff Kahn. Disproof of a conjecture of Alon and Spencer.
Let ν_{k} denote the size of a largest family of edge-disjoint k-cliques that can be packed into the random graph $G=G_{n, 1 / 2}$. Alon and Spencer conjectured the expected value of ν_{k} to be $\Omega\left(n^{2} / k^{2}\right)$ when k is slightly smaller than the clique number of G. We disprove this conjecture by showing that the expected value in question is $O\left(n^{2} / k^{3}\right)$.

Our main interest lies in answering the following more general question. Let $k \ll \sqrt{n}$ and A_{1}, \ldots, A_{t} be random k-subsets of $[n]$, chosen uniformly and independently. Then what can we say about the probability

$$
\mathbb{P}\left(\left|A_{i} \cap A_{j}\right| \leq 1 \forall i \neq j\right) ?
$$

We provide upper bounds for this probability that almost agree with the values obtained by pretending the events $\left\{\left|A_{i} \cap A_{j}\right|\right\}_{i<j}$ are independent. (Received September 26, 2017)

