1135-05-986 Heather D Jordon* (hjordon@albion.edu), Benjamin Abels, Nichole Brown and Alexandria Pokorny. \pm Skolem-Type Difference Sets. Preliminary report.
For a positive integer t, a Skolem-type difference set of order t is a partition of the set $\{1,2, \ldots, 3 t\}$ into triples $\left\{a_{i}, b_{i}, c_{i}\right\}$ such that $a_{i}+b_{i}=c_{i}$. Skolem-type difference sets and their many generalizations are well studied, and necessary and sufficient conditions for Skolem difference sets are known. A practical application of Skolem-type difference sets involves rewriting the triple $\left\{a_{i}, b_{i}, c_{i}\right\}$ as $a_{i}+b_{i}+c_{i}=0$ where c_{i} is necessarily negative. Hence, we study \pm Skolem-type difference sets of order $2 t$ which are partitions of the set $\{ \pm 1, \pm 2, \ldots, \pm 3 t\}$ into triples $\left\{a_{i}, b_{i}, c_{i}\right\}$ such that $a_{i}+b_{i}+c_{i}=0$. We also study a Langford-type generalization of this concept, namely, partitions of the set $\{ \pm d, \pm(d+1), \ldots, \pm(d+3 t-1)\}$ into into $2 t$ triples $\left\{a_{i}, b_{i}, c_{i}\right\}$ such that $a_{i}+b_{i}+c_{i}=0$ for $d=2$ and $d=3$. (Received September 18, 2017)

