1135-33-3100 Ira M. Gessel* (gessel@brandeis.edu). Rational functions with nonnegative power series coefficients. Preliminary report.
Mourad E. H. Ismail and M. V. Tamhankar [A combinatorial approach to some positivity problems, SIAM J. Math. Anal. 10 (1979), 478-485] proved, by applying MacMahon's Master Theorem to a $3 \times 3$ matrix, that for $0 \leq \lambda \leq 1$ the coefficient of $x^{l} y^{m} z^{n}$ in

$$
\frac{1}{1-(1-\lambda) x-\lambda y-\lambda x z-(1-\lambda) y z+x y z}
$$

is nonnegative. They expressed this coefficient, when nonzero, as a positive number times the square of an alternating sum. Easy consequences of this result are the nonnegativity of the coefficients of $(1-x-y-z+4 x y z)^{-1}$ and $(1-2 x-$ $2 y-2 z+3 x y+3 x z+3 y z)^{-1}$. The nonnegativity of the latter series was proved by G. Szegő in 1933.

I will discuss a multivariable generalization of Ismail and Tamhankar's result that applies MacMahon's Master Theorem to matrices of arbitrary size. (Received September 26, 2017)

