1135-C1-2898 Chon In Luk and Jeffrey Yeh*, jeffreyyeh@cpp.edu, and Lyheng Phey, Luis Cervantes, John Kath and Tanner Thomas. Powers of Matrices and Exponential Matrices. Preliminary report.
We are interested in finding computationally efficient and accurate ways to find powers of an $\mathrm{n} \times \mathrm{n}$ matrix, M , and exponential matrices, $\exp (M)$, under the assumptions that M has n-distinct known real eigenvalues and when $n>10$. We compare the traditional method of diagonalization to a Cayley-Hamilton, Vandermode matrix approach. As applications, we consider powers of one-step transition probability matrices, P , representing certain Markov chains and the matrix of transition probability functions, $\exp (\mathrm{Qt})$, corresponding to Markov processes where is Q is an n x n constant rate matrix and t is time. (Received September 26, 2017)

