vertex-identifying code in (p, β)-jumbled graphs.
Let $N[v]$ denote the closed neighborhood of a vertex v. For a finite graph G, a vertex-identifying code in G is a subset $C \subset V(G)$, with the property that $N[u] \cap C \neq N[v] \cap C$, for all distinct $u, v \in V(G)$ and $N[v] \cap C \neq \emptyset$, for all $v \in V(G)$. A graph G on a vertex set V is (p, β)-jumbled if, for all vertex subsets $X, Y \subseteq V(G),|e(X, Y)-p| X| | Y| | \leq \beta \sqrt{|X||Y|}$, where $e(X, Y)$ is the number of edges between X and Y. Let n be an integer, $0<p<1$ where p is fixed, and let $\beta=o\left(\sqrt{n \log _{2} n}\right)$. We prove there exists an $\varepsilon=o(1)$ such that if G is a (p, β)-jumbled graph on n vertices, then every vertex-identifying code in G has cardinality at least $\frac{(1-\varepsilon) \log _{2} n}{H_{2}(p)}$. (Received September 08, 2017)

