Pallavi Mishra*, Department of Mathematics, IIT Kharagpur, Kharagpur, India, and
Dharmendra Kumar Gupta, Department of Mathematics, Indian Institute of Technology,
Kharagpur, Kharagpur, India. A graph-based approach for counting all Sudoku squares of rank n. This paper deals with a graph-based approach for counting all Sudoku squares of rank n. First, all the S-permutations are generated and an S-permutation graph $G_{s}=\left(V_{s}, E_{s}\right)$ is constructed in which vertices represent S-permutations and two vertices are connected by an edge if and only if their corresponding S-permutations are not disjoint to each other. A set of mutually disjoint S-permutations corresponds to an independent set of G_{s}. A vertex $v \in V_{s}$ is selected randomly and an induced subgraph $\hat{G}_{s}=\left(\hat{V}_{s}, \hat{E}_{s}\right)$ of G_{s} is derived by considering all mutually disjoint vertices to v. There is a one to one correspondence between a maximum independent set of \hat{G}_{s} together with v and a Sudoku square. Now, an algorithm is developed to count all the maximum independent sets of \hat{G}_{s} which are equal to all Sudoku squares of rank n. The correctness of the algorithm is shown and its time complexity is $O\left(3^{\frac{\xi_{n}}{3}}\right)$, where ξ_{n} is the total number of S-permutations mutually disjoint to an S-permutation. The algorithm is experimentally tested for Sudoku squares of rank up to 3. An upper bound on the total number of Sudoku squares is also derived. (Received September 23, 2017)

