1135-VP-595 Monsikarn Jansrang* (jansr1m@cmich.edu). Graph Complement Conjecture for Minimum Semidefinite Rank. Preliminary report.
Given an $n \times n$ Hermitian matrix $A=\left[a_{i j}\right]$ we associate a graph $G(A)$ to the matrix A in such a way that the set of vertices is $\left\{v_{1}, \ldots, v_{n}\right\}$ and the set of edges is $E=\left\{\left\{v_{i}, v_{j}\right\}: a_{i j} \neq 0, i \neq j\right\}$. The diagonal entries of A do not have an effect on $G(A)$. Let $P(G)=\left\{A \in M_{n}(\mathbb{C}): A^{*}=A, A\right.$ is positive semidefinite, $\left.G(A)=G\right\}$. The minimum semidefinite rank of G is defined to be $m r_{+}^{\mathbb{C}}(G)=\min \{\operatorname{rank}(A): A \in P(G)\}$. If we restrict to real symmetric positive semidefinite matrices the real minimum semidefinite rank is denoted by $m r_{+}^{\mathbb{R}}(G)$ and it is clear that $m r_{+}^{\mathbb{C}}(G) \leq m r_{+}^{\mathbb{R}}(G)$.

It has been conjectured that $m r_{+}^{\mathbb{R}}(G)+m r_{+}^{\mathbb{R}}(\bar{G}) \leq|G|+2$ where \bar{G} is the complement of the graph G and $|G|$ is the number of vertices in G. This conjecture is called "Graph Complement Conjecture" and is denoted $G C C_{+}$. In this talk we will mention some known results on $G C C_{+}$and some new results about certain bipartite graphs. (Received September 24, 2017)

