1135-VP-595 Monsikarn Jansrang^{*} (jansr1m@cmich.edu). Graph Complement Conjecture for Minimum Semidefinite Rank. Preliminary report.

Given an $n \times n$ Hermitian matrix $A = [a_{ij}]$ we associate a graph G(A) to the matrix A in such a way that the set of vertices is $\{v_1, \ldots, v_n\}$ and the set of edges is $E = \{\{v_i, v_j\} : a_{ij} \neq 0, i \neq j\}$. The diagonal entries of A do not have an effect on G(A). Let $P(G) = \{A \in M_n(\mathbb{C}) : A^* = A, A$ is positive semidefinite, $G(A) = G\}$. The minimum semidefinite rank of G is defined to be $mr^{\mathbb{C}}_+(G) = \min\{rank(A) : A \in P(G)\}$. If we restrict to real symmetric positive semidefinite matrices the real minimum semidefinite rank is denoted by $mr^{\mathbb{R}}_+(G)$ and it is clear that $mr^{\mathbb{C}}_+(G) \leq mr^{\mathbb{R}}_+(G)$.

It has been conjectured that $mr_{+}^{\mathbb{R}}(G) + mr_{+}^{\mathbb{R}}(\overline{G}) \leq |G| + 2$ where \overline{G} is the complement of the graph G and |G| is the number of vertices in G. This conjecture is called "Graph Complement Conjecture" and is denoted GCC_{+} . In this talk we will mention some known results on GCC_{+} and some new results about certain bipartite graphs. (Received September 24, 2017)